在今日召开的 GTC大会上,英伟达推出了包括库,代码示例和指南在内的65个新的和更新的软件开发工具包,为正在推动各种计算挑战前沿的数据科学家,研究人员,学生和开发人员带来改进的特性和功能。
英伟达创始人兼首席执行官黄仁勋在其主题演讲中宣布,新增功能包括用于加速量子计算的下一代SDK,最后一英里交付算法和图神经网络。
英伟达创始人兼首席执行官黄仁勋
英伟达开发人员计划的近300万成员依赖于该公司超过150个加速计算套件,这一数字在过去五年中增长了6倍CUDA是并行计算平台和编程模型,仅去年一年就被下载了700万次,目前自发布以来已达到3000万次
进入新市场
新的 SDK 包括:
middot,用于实时物流的NVIDIA ReOpt,引入了先进的大规模并行算法,可优化车辆路线,仓库选择和车队组合其动态改道功能可以减少旅行时间,节省燃料成本并最大限度地减少闲置时间,可能为物流和供应链行业节省数十亿美元
middot,用于数组计算的cuNumeric,实现了NumPy应用程序编程接口,可自动伸缩到多GPU和多节点系统,而无需更改代码,这为使用Python的2000万强大的数据科学家,研究人员和科学家社区提供了价值它现可以在GitHub和Conda上使用,可以扩展到数千个GPU,为PyData和NumPy生态系统创建加速计算
middot,用于量子计算的cuQuantum,使大型量子电路的模拟速度显著加快,从而使量子研究人员可以研究更广阔的算法和应用空间其次,开发人员可以模拟诸如分子的近期变分量子算法和纠错算法等领域,以识别容错,并加速来自Atos,谷歌和IBM的流行量子模拟器
middot,用于图神经网络的CUDA—X 加速DGL容器,为使用大型图的GNN工作的开发人员和数据科学家提供了一种快速设置工作环境的方法该容器使其可以轻松地在集成的,GPU加速的GNN环境中结合DGL和Pytorch工作同时,使用GPU加速的GNN,即使是世界上最大的图,在单个图中接近1万亿条边,也可以被挖掘以获取洞察力例如,Pinterest使用具有数十亿个节点和边的图神经网络,基于 GPU 和用于模型训练和推理的优化库,来了解其超过3000亿个Pin的生态系统
我们的团队很高兴与英伟达合作,通过用于图形构建的RAPIDS cuDF,用于图形采样的RAPIDS cuGraph和用于GNN的自定义计算内核来加速DGL,亚马逊网络服务机器学习总监Alex Smola表示,DGL 是开源的,也可以通过Amazon NeptuneML提供托管服务。
除此之外,在上述新增SDK中,cuQuantum正被量子计算行业的许多其他领先企业采用包括橡树岭,阿贡,劳伦斯伯克利国家实验室和西北太平洋国家实验室在内的国家实验室,加州理工学院,牛津大学和麻省理工学院的大学研究团队,以及包括IonQ在内的公司都在将cuQuantum整合到他们的工作流程中
总部位于巴黎的量子计算初创公司Pasqal购买了英伟达DGX POD,利用cuQuantum进行大规模模拟这家初创公司的创新将用于加速药物设计和智能移动等领域的工作
Pasqal首席技术官Loic Henriet表示,对量子系统进行强大的,大规模模拟的能力对我们的工作至关重要cuQuantum软件与DGX A100硬件的结合将大大加快我们的进步
同时,为帮助开发者入门,英伟达将模拟软件放在一个容器中,该容器经过优化,可以在英伟达DGX A100系统运行,从而创建DGX量子设备。
它包括谷歌的Cirq框架和qsim模拟器,以及cuQuantum和英伟达高性能计算SDK该软件将于明年初在英伟达的NGC目录中提供
SDK更新 加速应用程序开发
对英伟达中包括Clara,DLSS,RTX,Nsight和Isaac套件在内的一系列最受欢迎的SDK进行了增强功能和升级。不过,时间晶体最大的用处或许已经体现出来了:让科学家得以进一步探索量子力学的边界。
其他更新的SDK包括:
middot,用于数据科学的RAPIDS 21.10增加了处理时间序列数据的新功能,并对现有算法进行了若干加速适用于Apache Spark 3.0 的RAPIDS Accelerator允许企业在不更改代码的情况下加速其在NVIDIA GPU上的分析操作今年RAPIDS 的下载量增长了400%,这是NVIDIA最受欢迎的SDK之一
middot,用于深度神经网络的Triton 2.15,TensorRT 8.2 和cuDNN 8.4,为大型语言模型和梯度提升决策树和随机森林的推理加速提供了新的优化。
middot,用于数据中心网络的DOCA 1.2,提供了一个零信任安全框架,通过硬件和软件身份验证,线速数据加密,分布式防火墙和智能遥测扩展了威胁保护。
middot,用于推荐系统的Merlin 0.8增加了可以在很少或没有用户数据的情况下预测用户的下一步动作的新功能,并支持比GPU内存更大的模型。
SDK 的新培训课程
据IDC称,全球全职开发人员的短缺预计将从2021年的140万增加到2025年的400万同时IDC认为,解决这一短缺的长期解决方案是创建能够教育和赋权的基础设施
英伟达深度学习学院的两门新课程支持并加速开发人员学习和使用SDK,为40多门课程的DLI增加了新内容。
middot,目前已经推出的《Introduction to DOCA for DPUs》是一门自学课程,为开发人员,研究人员和学生提供NVIDIA DOCA作为在NVIDIA BlueField DPU上加速数据中心计算的支持平台的基本概念。
middot,《Building Real—time Video AI Applications》这一课程将于本月晚些时候推出,内容包括将原始视频数据转换为基于深度学习的实时洞察,使用NVIDIA DeepStream智能视频分析和NVIDIA TAO工具包实现硬件加速组件,以构建高性能流媒体管道。
与新SDK一同增加的DLI 课程包括:
middot,由讲师指导的加速数据科学基础知识和自定进度的加速端到端数据科学工作流,通过使用NVIDIA RAPIDS加速数据科学库来应用各种GPU加速机器学习算法,包括XGBoost,cuGRAPH的单—源最短路径,以及cuML的KNN,DBSCAN 和逻辑回归以进行大规模数据分析。
middot,构建智能推荐系统包括NVIDIA Merlin 和其他用于构建高效推荐系统的基本工具和技术,以及如何为实时推荐部署GPU加速解决方案。。
面向企业AI的SDK
。郑重声明:此文内容为本网站转载企业宣传资讯,目的在于传播更多信息,与本站立场无关。仅供读者参考,并请自行核实相关内容。